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Corresponding states of periodic structures in nematic liquid crystals

A. J. Palangana, M. Simo˜es,* L. R. Evangelista, and A. A. Arrote´ia
Departamento de Fı´sica, Universidade Estadual de Maringa´, Avenida Colombo 5790, 87020-900 Maringa´, PR, Brazil

~Received 11 March 1997!

The discovery of a universal behavior for the distortion of one-dimensional walls, formed in nematic liquid
crystal samples under the action of a magnetic field, above the Fre´edericksz threshold is reported. By means of
a simple theoretical approach it is shown that the length of these walls, when properly scaled and considered
as a function of the reduced magnetic field, stays in a common line of corresponding states. This behavior is
confirmed by experimental data on lyotropic as well as in thermotropic nematic liquid crystals.
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PACS number~s!: 61.30.Gd, 61.30.Jf, 64.70.Md
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I. INTRODUCTION

One of the most amazing aspects of some thermodyna
cal systems is that, close to a critical point, the macrosco
behavior of very distinct microscopic systems can be put
single line of corresponding states@1#. The classical example
is the coexistence curve of many fluids that can be supe
posed when the temperature and density are scaled by
corresponding critical values@2,3#, giving a unique curve
characterizing the universality of that critical point. This po
sibility gives us a powerful insight into the physical nature
these systems because by a single change of scale a
particular properties of a singular system can be put as
and all that remains is a universal behavior presenting
essential features of some large thermodynamical class
the nematic state we have the well-known Fre´edericksz tran-
sition @4,5#. In this way we can suspect that just around t
Fréedericksz transition the nematic state could have in so
sense a universal behavior. If true, this result can constitu
well-established background for the measurement of
nematic parameters. The report of experimental evidenc
this fact is the main aim of this paper where we relate
experimental discovery of a line of corresponding states
the nematic structure just above the Fre´edericksz threshold
In order to verify it we choose to work with domains, sep
rated by so-called walls, that frequently appears as a un
mensional periodic array just above this second-order ph
transition@5#.

Periodic distortions in nematic liquid crystals~NLC’s! un-
der the action of a magnetic or electric field have be
widely investigated. The basic feature of these phenomen
that under the action of the magnetic field two symmetri
distorted textures can be created and separated by a wal@5#.
In the last few years the nature and physical properties
these walls have been considered in several works@6–9#.
Recently, their interaction has been explicitly taken into
count for a lyotropic system in order to analyze new expe
mental data@10#. Moreover, the connection between the d
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tadual de Londrina, Campus Universita´rio, 86051-970 Londrina,
PR, Brazil.
561063-651X/97/56~4!/4282~4!/$10.00
i-
ic
a

-
eir

-
f
the
e,
e
In

e
e
a
e
of
e
r

-
i-
se

n
is
l

of

-
i-

mensionality and the periodic behavior in these systems
been established in analytical basis@11#.

From the experimental data it is possible to connect
wavelength of the periodic distortion~l! with the applied
magnetic field@10,12#. To account for the observed depe
dence of the wavelength on the applied magnetic field, it
been necessary to consider an interaction between the w
producing a saturated portion in the director bend pro
@10#, which is characterized by a constant that is independ
of the nematic media~lyotropic or thermotropic! with posi-
tive diamagnetic anisotropy. We show that the measu
points~the wavelength vs the reduced magnetic field!, when
properly scaled, lies along the same universal curve be
therefore, a line of walls’ corresponding states. Our conc
sions are corroborated by three distinct measurements
formed on lyotropic samples and by some published data
thermotropics@7#.

II. FUNDAMENTALS

In order to obtain the law for corresponding states,
briefly present the theoretical main lines of the approach
we are proposing to treat the problem. We consider a s
with dimensionsa along thex axis,b along they axis andd
along thez axis, in such a way thata@b@d. The director is
initially uniformly aligned along thex axis. An external con-
trolled magnetic fieldH is applied along they axis. This
geometry produces twist-bend walls in the sample@5,10#. A
typical periodic distortion is exhibited in Fig. 1 of Ref.@10#.
To describe them we assume that the components of
director arenx5cosu(x,y,z), ny5sinu(x,y,z), nz50, where
u(x,y,z) is the angle between the directornW and thex-axis
direction. Furthermore strong boundary conditions are
sumed at the sample edges.

In order to work with a handleable expression for the fr
energy we will use the two-elastic-constant approximat
(K115K33). This will not change our fundamental resu
whose only requisite is the existence of the critical point,
Fredericks threshold, which does not depends on how m
elastic constants we use in the statement of the problem@5#.
In this way the free energy becomes@5,13#
4282 © 1997 The American Physical Society
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F5E $ 1
2 K33@~]xu!21~]yu!2#1 1

2 K22~]zu!2

2 1
2 xaH2sin2u%dV, ~1!

whereK11, K22, andK33 are, respectively, the elastic con
stants of splay, twist, and bend,xa.0 is the diamagnetic
anisotropy, andV is the volume of the sample. The gener
solution satisfying the boundary conditions is assumed to
of the form

u~x,y,z!5h~x!sinS py

b D sinS pz

d D , ~2!

for 0<x<a, 0<y<b, and 0<z<d, whereh(x) is the con-
figuration of the nematic structure along thex axis.

By introducing the quantities

xaHc
25K33~p/b!21K22~p/d!2,

h5H/Hc ,
~3!

x5AK33/~xaHc
2!t,

u0
25 8

3 ,

and observing that the magnetic free-energy density of
configurationh(x) along theexW direction can be put in the
form of a functional: I @h(x)#5* sin2u dy dz.1

4h
2(x)

2 3
64h

4(x)1O„h6(x)…, where its polynomial approximation
gives a good fit until the neighborhoods of its second ex
mum. In this way the free energy, Eq.~1!, can be written in
the form

F5 1
4 bdAK33~xaHc

2!NE
0

t

F dt,

FIG. 1. The behavior of (2d/t)2 as a function ofh2 for three
different lyotropic substances. All the experimental data w
scaled according to the presented model. The continuous line r
to our calculations. The predicted ratios between the elastic c
stants are also exhibited.
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where

F5 1
2 ~] th!21 1

2 ~12h2!h21
1

4u0
2

h2h4, ~4!

andN is the number of walls along thex direction, and the
period is given byl5AK33/(xaHc

2)t.
The new free energy densityF does not have any particu

lar parameter characterizing the actual system. The ela
constants, the critical field and the sample dimensions h
been put aside. Therefore the resulting equation forh(t) will
be, save for the geometry, completely independent of
NLC sample, and the equation for the fieldh(t) appears to
describe a kind of equation of corresponding states@1# for
the walls that assumes the form

] t
2h2~12h2!h2

1

u0
2

h2h350, ~5!

with the boundary conditionsh(0)5h(t)50.
In order to find the solution of this equation we rememb

that the spatial homogeneity of Eq.~4! warrants the conser
vation of

C5 1
2 ~] th!22 1

2 ~12h2!h22
1

4u0
2 h2h4. ~6!

This equation can be used to findh(t). By the usual
procedure we find

t2t05
A2u0

2

h Eh dh̃

A~ h̃22h0
2!~ h̃22h1

2!
, ~7!

where

h0
25

u0
2~h221!

h2 F12S 12
4h2C

u0
2~h221!2D 1/2G ,

h1
25

u0
2~h221!

h2 F11S 12
4h2C

u0
2~h221!2D 1/2G ,

and 6h0 are the turning points of the oscillating functio
h(t). In this wayh0 gives its amplitude.

Since Eq.~7! is an elliptic integral of the first kind, it can
be written in terms of elliptic functions@17#, giving

h~ !5h0snFh1S h2

2u0
2D 1/2

t,kG , ~8!

where sn(u,k) is the elliptic sine function of argumentk and
we have chosent0in such a way that sn(0,k)50. For Eq.~8!
we havek25h0

2/h1
2. Therefore the argument is limited to th

interval 0<k2<1.
From Eq. ~7! it is also possible to obtain the periodt.

Writing it in a form convenient for future use, we obtain

S 2p

t D 2

5S p

2 D 2

~h221!S 1

~11k2!

1

„K~k!…2D . ~9!
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whereK(k) is the complete elliptic integral of the first kin
@14#.

Using the definition ofk2 given above it is possible to
expressC, h1 andh0 in terms ofk2. We obtain

C5u0
2 k2

~11k2!2

~h221!2

h2 ,

h05u0
2 2k2

~11k2!

~h221!

h2 ,

h15
h0

k2 .

Therefore, sincek2 is a function ofC, we conclude that it is
just a constant of integration controlling the shape of
elliptic sine function @14#, i.e., as k→0 we have
sn(u,k)→sinu, and as k→1 we have sn(u,k)→tanhu.
Moreover the solutionh(t) can be separated into two term
the amplitude of the oscillation, given byh0 , and the shape
of the wall given by the elliptic sine function@10#. Hence, to
solve Eq.~5! exactly, it is enough to determinek2.

From Eq.~9!, we see that in the case in whichk2 is not a
function of h, a plot of 1/l2 vs h2 should be a straight line
But, as there is a bending in the curve, this is not observe
the experiment. Thusk2 must change with the magnet
field. In order to find this dependence it would be necess
to consider the physics of the system in the instant in wh
the walls were created, which would involve the study o
nonlinear process, which is not our aim here. We want
describe the existence of the corresponding states. In
way we will just give anad hocargument to find the relation
betweenk2 andh. So, observe that the parameterk2 grows
with the magnetic field~above the Fre´edericksz threshold!
having an asymptotic value given byk251 ~the maximum
deformation!. This can be put in the simple differential rela
tion

dk2

d~h21!
5a~12k2!, ~10!

which can be easily integrated, giving

k2512e2a~h21!, ~11!

where we have used the fact that at the Fre´edericksz thresh-
old the walls should disappear, that is, ash→1, k2→0. In
this way Eq.~10! is the simplest relation betweenk2 andh
affording thek2 limits, anda now plays the rule of a new
constant of integration being, therefore, unique, and mean
that the shape of the walls is given in a universal way by
reduced magnetic field.

At this point we can use the experimental points to t
our model. Since Eq.~9! does not depend on a particul
system we hope that, if scaled according to the rules lead
to Eqs. ~4!, the measured points will be located along t
same universal line, and give us the ratio (K22/K33) and the
parametera that appears in Eq.~11!. Of course, in order to
achieve such a requirement, each particular system c
give a particular value to these parameters. We have fo
not only that all the experimental points can indeed be
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along the same universal line, giving us the ratio between
elastics constants, but thata is indeed a universal paramete

We tested our results fora in different liquid crystalline
systems. For this purpose three lyotropic samples were
pared according to the usual procedure. The first sam
~mixture 1! is a lyotropic mixture of potassium laurate~KL,
29.4!, decanol~DeOH, 6.6!, and water~64.0! @15#. The sec-
ond sample~mixture II! is a lyotropic mixture of sodium
decylsulfate~NadS, 41.6!, decanol~DeOH, 6.6!, and water
~51.8! @16#. The third sample~mixture III! is a lyotropic mix-
ture of potassium laurate~KL, 34.5!, potassium chloride
~KCl, 3.0!, and water~62.5! @17#. The concentrations are
indicated in weight percent. All the systems are in the ne
atic calamitic phase (Nc) at room temperature, for which th
measurements were performed.

The method of generating the periodic distortion of t
director consists in orienting aNc sample in a planar geom
etry, with a high magnetic field~10 kG along thex axis!.
After a well-oriented sample is achieved, the field
switched off, and a controlled magnetic field is applied alo
the y axis. The resulting competition between the magne
susceptibility ~which tends to align the director along th
field! and the elastic energies~which favors a director orien-
tation consistent with the orientation at the surface! is re-
sponsible for the distortion of the director at values of t
magnetic field above the Fre´edericksz threshold. The reaso
is that, inside the sample, the director is subjected to a tor
which tries to rotate it. At the same time, the director exp
riences an elastic restoring torque to the anchored sur
layers.

In Fig. 1 the best fits of experimental data obtained fro
Eq. ~9! are depicted. The ratio (K22/K33) in each case was
obtained by using the least-square procedure and a univ
value (a'0.13) for the parametera. This figure refers to
different lyotropic systems. In Fig. 2, besides the data
lyotropic systems, we also report the experimental data o
thermotropic nematic sample@7# with the corresponding ra
tio for the elastic constants, and by assuming the same v
for the parametera.

FIG. 2. The behavior of (2d/t)2 as a function ofh2 for the same
three lyotropic substances exhibited in Fig. 1 with the data o
thermotropic substance~MBBA ! obtained from Ref.@7#. For the
MBBA we have used forK33/K22 the value reported in Ref.@7#.
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Observe that the significant differences in the ratio
tween the elastic constants in the lyotropic systems are
surprising because the compositions of these complex
tems are very different. Also, the sequence of phase tra
tions in these compounds is distinct. For instance, in hea
the mixture III the system passes to the hexagonal ph
('40 °C) @17#, whereas the mixtures I and II, respective
near 50 and 40 °C, change to the isotropic phase.

III. CONCLUSION

In this work we have used the static exact solution of
Eq. ~5! to describe a universal behavior of the periodic wa
appearing above the Fre´edericksz threshold. In a previou
work @10# we used an approximated solution of this equat
to describe these same walls and, with then, found a pro
of the wavelength of this periodic structures as a function
the magnetic field. Of course, as they describe the same
lution of Eq.~5!, they give approximately the same behav
for the wavelength. Now, with the exact one, we have sho
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that the family of periodic walls appearing above the Fre´ed-
ericksz threshold, for lyotropic and thermotropic compoun
can be reduced to a single physical picture through a law
corresponding states through a scaling of the elastic c
stants and the Fre´edericksz critical field. We have also dis
covered a universal constant characterizing the correla
between the geometric form of the wall and the reduc
magnetic field. This constant must be determined by
physics of the system in the moment in which the walls w
produced, despite the fact we are dealing with a metast
system. A practical consequence of the entire approach
are proposing is that it can be used as a method to mea
the elastic constants of a broad class of nematic liquid c
tals, with positive diamagnetic anisotropy.
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